
CFG Pumping Lemma
We use one of the provided examples in JFLAP to explain the context free pumping

lemma. Remember that to show that a language is not context free using the contrapositive
argument of the pumping lemma, you have to show the following.

Regardless of the value of m chosen, there exists some string w in the provided language
of length greater than m such that there is no way that the string w can be decomposed into
five parts w = uvxyz and satisfy the following 3 conditions

1. |vy| > 0

2. |vxy| ≤ m

3. uvixyiz is in the language for all i ≥ 0.

JFLAP treats the showing of a language to not be regular in a manner similar to adver-
sarial arguments. That is, the user is given the chance to pick a pumping length and the
computer will show why that will not work by first producing a string and then showing the
user how regardless of which way they go about making their partition into u, v and x, y
and z.

The chosen example is L = {aibjck : i > j, i > k}
Solution
As with any proof involving showing a language to not be regular using the pumping

lemma, assume the language is regular and has a pumping length m.
The next step is to come up with a string that cannot be decomposed in accordance with

the requirements of the pumping lemma.
In this particular case, since we have to have the block of as be greater than the block of

bs and cs, a natural choice is to make the number of as be just one greater than the block of
bs and cs. Also, let the bs and cs have the same length.

That is, pick the string to be am+1bmcm.
If you click ’Explain’ in JFLAP you get an explanation of the solution, which we present

here, with some slight edits.
Unfortunately no valid partition of w exists. For any m value, a possible value for w is

”am+1bmcm”. The v and y values together thus would have a maximum of two unique letters.
Any possible v or y values would then be problematic if i = 0, i = 2, or perhaps both. Thus,
this language is not context-free.

1

To help with the understanding of this proccess, JFLAP allows you to pick whether you
or the computer makes the first move.

If you pick ’you go first’ in this case, you are allowed to enter a value of m. In this case,
say we enter a value of 3 and then the computer comes up with the string aaaabbbccc.

Upon being presented with the decomposition screen, we have to split this into various
cases. Note that if we ever repeat a case, or if we have a case that is similar to one that has
already been covered, JFLAP will be able to detect that.

2

The first case would be to have u be empty, v be a some portion of the as and y be the
string. It is easy to see that pumping down will result in a string that is not in the language,
since it will lessen the number of as while retaining the same number of bs and cs.

3

Now we slowly start moving v across the string. That is to say, make y also have some
as. Again pumping down will work as shown here.

4

Then there is the case of v being empty but y having some as. Again pumping down
works as it lessens the number of as while having the same number of bs and cs.

5

Now we move further and let y go into the b block. This case is interesting because while
pumping down will reduce the number of as and bs, the number of cs stay the same.

6

Now we let v straddle the a, b boundary. That is it contains some as and some bs. Again,
pumping down works since v contains at least one a and therefore pumping down will bring
down the number of as while neither v nor y contain any cs.

7

Similar to letting v straddle the a, b boundary, there is a case for y straddling the a, b
boundary. Again, the same pumping down logic applies.

8

Now we move the v and y into the b block. Now pumping down might not work, but by
pumping up we ensure that the number of bs go up at least by 2. Since we carefully chose
the string so that the number of as is just one more than the number of bs, this pumped up
string will not be in the language.

9

We then have the case of y going over the b and c boundary. Again, we need to pump
up.

10

Then y moves further forward down the string and goes into the c region. Once again
pumping up works, in this case it will increase both the number of bs and the number of cs
while keeping the number of as the same.

11

Finally we move v further forward and make it have some bs and some cs.

12

The last case is the one where both v and y contain only cs. Again, we need to pump up
and then we see the string cannot be part of the language because we have the same number
of as but the number of cs has gone up.

Note that while it is useful to think of these individual cases and you can use JFLAP to
see how the argument works for each case, it is also important to think about similarities
between the cases. As you can see in the explanation section, the key to this particular
argument not working out is that regardless of the split the v and y values together thus
would have a maximum of two unique letters.

13

